跳转至

合并两个有序数组

1. 题目

leetcode链接

给你两个按 非递减顺序 排列的整数数组 nums1nums2,另有两个整数 mn ,分别表示 nums1nums2中的元素数目。

请你 合并 nums2nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] 
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

提示:

  • nums1.length == m + n
  • nums2.length == n
  • 0 <= m, n <= 200
  • 1 <= m + n <= 200
  • -109 <= nums1[i], nums2[j] <= 109

进阶:你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?

2. 题解

2.1 方法一:直接合并后排序

算法

最直观的方法是先将数组nums2 放进数组nums1 的尾部,然后直接对整个数组进行排序。

class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
  for (int i = 0; i != n; ++i) {
    nums1[m + i] = nums2[i];
  }
    Arrays.sort(nums1);
    }
}
class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        for (int i = 0; i != n; ++i) {
            nums1[m + i] = nums2[i];
        }
        sort(nums1.begin(), nums1.end());
    }
};

复杂度分析

  • 时间复杂度:O((m+n)log(m+n))。 排序序列长度为 m+n,套用快速排序的时间复杂度即可,平均情况为 O((m+n)log(m+n))

  • 空间复杂度:O(log(m+n))。 排序序列长度为m+n,套用快速排序的空间复杂度即可,平均情况为 O(log(m+n))

2.2.双指针

算法

方法一没有利用数组nums1nums2已经被排序的性质。为了利用这一性质,我们可以使用双指针方法。这一方法将两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中。如下面的动画所示:

array_algo_3

我们为两个数组分别设置一个指针 p1p2 来作为队列的头部指针。代码实现如下:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = 0, p2 = 0;
        int[] sorted = new int[m + n];
        int cur;
        while (p1 < m || p2 < n) {
                //其中一个数组遍历完,后续的可以直接拷贝另外一个数组
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            //比较num1数组与nums2数组,哪个小,就存入sorted中    
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
}
class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        int p1 = 0, p2 = 0;
        int sorted[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
};

复杂度分析

  • 时间复杂度:O(m+n)。

指针移动单调递增,最多移动 m+n 次,因此时间复杂度为 O(m+n)。

  • 空间复杂度:O(m+n)。

需要建立长度为 m+n 的中间数组 sorted

2.3 方法三:逆向双指针

方法二中,之所以要使用临时变量,是因为如果直接合并到数组 nums1 中, nums1 中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖 nums1 中的元素呢?观察可知,nums1 的后半部分是空的,可以直接覆盖而不会影响结果。因此可以指针设置为从后向前遍历,每次取两者之中的较大者放进 nums1 的最后面。

严格来说,在此遍历过程中的任意一个时刻,nums1 数组中有 m−p1−1 个元素被放入 nums 1 的后半部,nums2 数组中有 n−p2−1 个元素被放入 nums1 的后半部,而在指针 p1 的后面,nums1 数组有 m+n−p1−1 个位置。由于 m+n−p1−1≥m−p1−1+n−p2−1 等价于 p2>=-1 永远成立,因此 p1 后面的位置永远足够容纳被插入的元素,不会产生 p1 的元素被覆盖的情况。

实现代码如下:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = m - 1, p2 = n - 1;
        int tail = m + n - 1;
        int cur;
        while (p1 >= 0 || p2 >= 0) {
                //-1表示其中一个数组遍历完,后续的可以直接操作另一个数组
            if (p1 == -1) {
                cur = nums2[p2--];
            } else if (p2 == -1) {
                cur = nums1[p1--];
            } else if (nums1[p1] > nums2[p2]) {
                cur = nums1[p1--];
            } else {
                cur = nums2[p2--];
            }
            nums1[tail--] = cur;
        }
    }
}
class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        int p1 = m - 1, p2 = n - 1;
        int tail = m + n - 1;
        int cur;
        while (p1 >= 0 || p2 >= 0) {
            if (p1 == -1) {
                cur = nums2[p2--];
            } else if (p2 == -1) {
                cur = nums1[p1--];
            } else if (nums1[p1] > nums2[p2]) {
                cur = nums1[p1--];
            } else {
                cur = nums2[p2--];
            }
            nums1[tail--] = cur;
        }
    }
};

复杂度分析

  • 时间复杂度:O(m+n)

指针移动单调递减,最多移动 m+n 次,因此时间复杂度为 O(m+n)

  • 空间复杂度:O(1)

直接对数组 nums1 原地修改,不需要额外空间。